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important work by L. Fore11 [ 1 1 contains a solution 
inviscid supersonic flow about a flat delta wing with 

supersonic leading edges at a finite angle of attack without yaw. 

Since the leading edges are supersonic, the conical flows formed by the 
‘top’ and the “bottom”* of the wing do not interfere with each other, 
and therefore can be examined separately. Unfortunately in this interest- 
ing work, as it will be shown later, the statement of the boundary con- 
ditions for the expansion surface is incorrect. This weakens Fowell’s 
conclusion concerning flow about the expansion surface. The correct 
picture of the flow and the statement of boundary conditions for a delta 
wing with supersonic leading edges are contained in the author’s paper 
[2 I. 

If a conical flow has a velocity potential #J, then the velocity com- 
ponents along the system of Cartesian coordinates o, x, y, z can be 
written: 

. “‘fop’ and “bottom” stand for the expansion and the compression sur- 
faces of the wing, respectively. (Translator) 
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u==m =F r* v=cp,= F,,, w=(pz=F---u-rp, ‘p 

where F satisfies the eauation 

Here 
A = 62% (1 + es) - (u - cwp, c = a* (1 + q) - fv - -tjwy 

= .zF K,rl) 

X-i 
B=(aa-w~}E~~+(u~+vY~)w-uv, as=a~2 - 2 -(U~+v~+w*-w~2) 

(1 is the speed of sound. a1 g1 are, respectively, the speed of sound and 
the speed at a certain point in the flow, K is the ratio of specific 
heats. The plane tq has a single physical sense: it is the plane z = 1 
in the space zyz, while t, 9, respectively, are coordinates of the points 
x and y in this plane. 

A = AC - B2 = U2 [a2 (1 + ;a + $2) - (24 - Fw)” - (v - YJW)2 - (Q - Y#] (3) 

Let us examine the picture of the flow about a delta wing in the plane 
trj (Fig.2); due to symmetry only one half of the flow is shown, for 
c > 6, The representation of the flow according to Fowell is shown in 

Fig. 3 a, and that by the author [ 3 f is given in b. 

Fig. 2, 

The wing is represented by the segment 03 (the axis 0~ lies in the 
plane of the wing). The envelope of the Mach cones in the undisturbed 
flow with apexes at the leading edges appears as the segment l-3 with 
apex at the nose of the wing (point 6 in Fig. 1). The flow about the sharp 
leading edge results in an oblique Prandtl-Meyer expansion which continues 
until the velocity vector is parallel to the wing, This flow is repre- 
sented by the bundle of straight line characteristics of equation (1) 
converging at point 3. Segments 3-5 in Fig. 3a and 3-g in Fig. 3b 
represent the boundary of the Prandtl-&yer flow. which is followed by 
uniform flow, next to the wing surface. 
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As boundary for the region of the ordinary conical fled for equation 

(11, Fowell proposes the parabolic line I-2-5-4 in Fig. 2a. constructed 

for the part of the conical flow already found. For the undisturbed flow 

this is part of an arc of the Mach cons I-2; for the uniform flow adjacer 

to the surface of the wing it is also part of the Mach cone 5-4; and for 

the Prandtl-Meyer flow it is the parabolic line 2-5. However, between the 

Mach cones and the parabolic line 2-5 there is an essential distinction. 

A Mach cone for uniform flow is at the same time a parabolic line and a 

characteristic curve of equation (l), since all straight characteristics 

in a uniform flow touch the Mach cone (see, for example, Ref. f211, 

whereas the parabolic line 2-5 for the Prandtl-Meyer flow cannot be a 

characteristic, for it would then be an envelope of straight character- 

istics, which is impossible. If it is required that the velocity compo- 

nents of the ordinary conical flow change continuously along 2-5 into the 

velocity components of a Prandtl-Meyer flow, this is equivalent to the 

requirement that the function F and its normal derivative be given on 2-5 

Rut the assignment of F and its normal derivative on the non-character- 

istic curve 2-5 determines, according to the Cauchy-Rovaleskii theorem, 
a unique analytical solution of equation (11, in a neighborhood of 2-5, 

and this is the Prandtl-Meyer solution (the curve 2-5 and initial data on 

it are specified by analytic functions). It follows that it is not possfb 
to join these two different solutions of equation (1) along 2-5 in Fig. 2 

For this reason, in [ 6 1 the ordinary conical flow in Fig. 2b is 

separated by the Prandtl-Meyer flow characteristic 2-9, then by the 

portion of straight characteristic 9-5 passing into a portion of the Mach 

cone 5-4. Straight characteristics cannot be extended to the surface of 

the wing, because, as the angle of attack 6 decreases, the region of the 

ordinary conical flow would fill all the interior space 1-2-3-o. Since 

the characteristic 9-5 is straight, the adjacent flow must be a simple 

wave [ 3 1 . 

Properties of simple waves were investigated by the author in 12 1. 
It was shown that for motion along curved characteristics of a simple 

wave, passing through 9-5, the encountered parabolic points cannot form 

a continuous parabolic line, along which the simple wave could be joined 

to a solution of elliptic type, which will exist in the interior portion 

of the ordinary conical flow (at the point oh > 6). This conclusion is 
correct if the simple wave has piecewise continuous third derivatives of 

F in the vicinity of the parabolic line. 

In Ref. 12 1, the case in which the curved characteristics of a simple 

wave converge to one parabolic point was not investigated. Assuming that 

F is sufficiently smooth, it can be shown that if the derivative of 

acceleration in a direction normal to the straight characteristic. upon 

which this parabolic point is located, is different from zero (the accele- 
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ration must become zero C 9 I ), th en the characteristics cannot converge 

to one point. 

A11 these singularities of simple waves and certain other general con- 

siderations of boundary problems connected with equations of mixed type 

led the author to a conclusion about the formation of a shock wave, which 

emerges from the parabolic point 9, where its intensity is zero, and lies 

in the vicinity of the curved characteristic 9-9, straight characteristic 
9-5, and the segment of the Mach cone 5-4 (dotted line z-11 in Fig. 9b). 

The segment of the Mach cone can serve as a boundary of the conical flow; 

however if this is adjacent to a uniform flow, there must be a special, 

particular structure in the vicinity of the Mach cone [4 I. For this 

reason the author considers the possible formation of a weak shock z-19 

and includes it in the formulation of the boundary conditions, because, 

if such a discontinuity does not exist, we automatically obtain the seg- 

ment of the Mach cone l-9, in the solution of the boundary-value problem. 

Within region 19-9-11-9 in Fig. 9b the author assumes that h = (AC - 9’) > 6. 

The boundary value problem is formulated in Ref. [ 2 1. 

Powell presents experimental data, which corroborates the scheme of 

the author of the present paper. According to Fowell’s scheme, there are 

two regimes of flow on the expansion surface of the wing: without a 

lateral shockwave and with a shockwave. The first case is observed when 

point 5 on Fig. 9a is not on line l-9; when it is on line l-9 a dis- 

continuity is formed. The angle of attack at which this occurs, Powell 

called a critical one. In the neighborhood of the critical angle of 

attack there would have to be a sharp change in pressure distribution at 

the wing. The experiments indicated that such a change in pressure dis- 

tribution does not take place, but instead, the lateral shockwave 9-11 in 

Fig. 913 is formed at small angles of attack, which completely corroborates 

the validity of the author’s scheme. 

Fowell’s concept of flow on the compression surface of the wing coin- 

cides with the one presented in Ref. [ 9 I. On the leading edge a plane 

shock 3-7 is formed (Fig. 9) followed by uniform flow. The region of the 

ordinary conical flow is bounded by the curved shock T-6 and by the seg- 

ment of the Mach cone for the uniform flow following the shockwave 6-7. 

Here the author also introduced a possible discontinuity 7-19 in Fig. 9b. 

Powell examined the rotational conical flow formed on the compression 

surface of the wing and came to the conclusion that the constant entropy 
lines converge at the point 9 Wig.9) where Ferri’s vortex singularity 

occurs. This appears to be a particular case in the general pattern of 

conical flows. 

Let us examine the path of a gas particle moving in a conical flow and 

its projection on the plane I, 7; the equation of these lines, which we 



566 B.M. Bulakh 

shall call flow lines, will be 

dE d? =- 
u-!$l 2’-_?w 

Along these lines the entropy remains constant. It can be shown that 
for a uniform flow about any conical body there are two cases. The first 
case exists when the flow lines run into the surface of the body, which 
appears in this case as an isobar; the-second case occurs when the flow 
lines converge into one or several points, where Ferri singularities are 
formed. For instance, in a flow around an elliptic cone at zero angle of 
attack, two Ferri singularities are formed (Fig.3). 

Fig. 3. Fig. 4. 

In a flow about an edge of a rectangular plate, only one Ferri singu- 
larity is formed (Fig.4). Here o-3 is the wing; l-7 is a characteristic 
of the Prandtl-Meyer flow formed at the leading edge: T-3, 3-g are a 
straight characteristic and the Mach cone for the uniform flow; 1-g is a 
shockwave forming a boundary of the ordinary conical flow on the upper 
part of the wing; l-3 is a shock wave; point 3 is the intersection of the 
Mach cone of the flow behind the plane shock lo-3 from the leading edge 
with the shock line 10-3; 3-4 is a possible discontinuity. All the lines 
converge to point 11 located on the upper surface. It should be noted 
that Lighthill [5 1 was the first to deduce the formation of a shock wave 
1-g. This was based on the behavior of the linearized solution in the 
vicinity of the Mach cone, which, as mentioned in Ref. [ 6 1 appears to be 
incorrect. For this reason Lighthill’s deduction concerning the formation 
of the shock wave 1-g (Fig.3) is not sufficiently convincing. 

In conclusion the author thanks e.g. Fal’kovich for his valuable 
suggestions. 
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